Câu 37215 - Tự Học 365
Câu hỏi Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + \left( {{m^2} - 2m} \right)t\\y = 5 - \left( {m - 4} \right)t\\z = 7 - 2\sqrt 2 \end{array} \right.\) và điểm \(A\left( {1;2;3} \right)\). Gọi \(S\) là tập các giá trị thực của tham số \(m\) để khoảng cách từ \(A\) đến đường thẳng \(\Delta \) có giá tị nhỏ nhất. Tổng các phần tử của \(S\) là


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Khoảng cách từ điểm \(A\) đến đường thẳng \(\Delta \) là nhỏ nhất nếu góc tạo bởi đường thẳng \(AM\) với \(\Delta \) đạt GTNN.

Ở đó, \(M\) là điểm đi qua của \(\Delta \).

Công thức tính góc giữa hai đường thẳng: \(\cos \alpha  = \dfrac{{\left| {\overrightarrow {AM} .\overrightarrow u } \right|}}{{\left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow u } \right|}}\) .

Xem lời giải

Lời giải của Tự Học 365

Đường thẳng \(\Delta \) đi qua điểm \(M\left( {2;5;7 - 2\sqrt 2 } \right)\) và nhận \(\overrightarrow u  = \left( {{m^2} - 2m;4 - m;0} \right)\) làm VTCP.

Có \(\overrightarrow {AM}  = \left( {1;3;4 - 2\sqrt 2 } \right) \Rightarrow AM = 34 - 16\sqrt 2 \).

Để \(d\left( {A,\Delta } \right) = A{H_{\min }}\) thì \(\sin \alpha  = \dfrac{{AH}}{{AM}}\) đạt GTNN hay \(\cos \alpha \) đạt GTLN.

Mà \(\cos \alpha  = \cos \left( {AM,\Delta } \right) = \dfrac{{\left| {\overrightarrow {AM} .\overrightarrow u } \right|}}{{\left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow u } \right|}} = \dfrac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\left( {34 - 16\sqrt 2 } \right).\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }}\) 

Mà \(\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right| \le \sqrt {{1^2} + {3^2}} .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} \)

\( \Rightarrow \dfrac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\left( {34 - 16\sqrt 2 } \right).\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }} \le \dfrac{{\sqrt {10} }}{{34 - 16\sqrt 2 }}\) 

\( \Rightarrow \cos \alpha \) đạt GTLN nếu \(\dfrac{{{m^2} - 2m}}{1} = \dfrac{{4 - m}}{3} \Leftrightarrow 3{m^2} - 6m = 4 - m \Leftrightarrow 3{m^2} - 5m - 4 = 0\)

Phương trình này có hai nghiệm phân biệt do \(ac < 0\) nên tổng các giá trị của \(m\) là \(\dfrac{5}{3}\) .

Đáp án cần chọn là: b

Toán Lớp 12