Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A\left( {2,1,3} \right)$ và đường thẳng \(d':\dfrac{{x - 1}}{3} = \dfrac{{y - 2}}{1} = \dfrac{z}{1}\) . Gọi \(d\) là đường thẳng đi qua \(A\) và song song \(d'\). Phương trình nào sau đây không phải là phương trình đường thẳng \(d\)?
Phương pháp giải
Đường thẳng \(d\) qua \(A\) và song song với \(d'\) thì \(d\) có VTCP \(\overrightarrow {{u_d}} = \overrightarrow {{u_{d'}}} \)
Lời giải của Tự Học 365
Phương trình đường thẳng \(d\) có vecto chỉ phương là \(\vec u = (3,1,1)\) và đi qua điểm $A\left( {2,1,3} \right)$ nên có phương trình \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + t\\z = 3 + t\end{array} \right.\)
+ Phương án A đúng.
+ Với $t = - 1$ ta có $B\left( { - 1,0,2} \right)$ thuộc \(d\) . Do đó B đúng.
+ Với $t = 1$, ta có $C\left( {5,2,4} \right)$ thuộc \(d\) . Do đó C đúng.
Đáp án cần chọn là: d
Toán Lớp 12