Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:
Phương pháp giải
Sử dụng định lý Vi-et cho phương trình bậc hai: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A}\\{z_1}{z_2} = \dfrac{C}{A}\end{array} \right.\)
Lời giải của Tự Học 365
Ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{B}{A} = \dfrac{{ - 2i}}{1} = - 2i\\{z_1}{z_2} = \dfrac{C}{A} = \dfrac{i}{1} = i\end{array} \right.\)
Vậy \({z_1} + {z_2} = - 2i\).
Đáp án cần chọn là: d
Toán Lớp 12