Trong mặt phẳng tọa độ \(Oxy\) cho đường thẳng \(d\) có phương trình \(2x - y + 1 = 0\). Để phép tịnh tiến theo vectơ \(\vec v\) biến \(d\) thành chính nó thì \(\vec v\) phải là vectơ nào trong các vectơ sau?
Phương pháp giải
Đường thẳng biến thành chính nó nếu véc tơ tịnh tiến cùng phương với véc tơ chỉ phương của đường thẳng.
Lời giải của Tự Học 365
Để \(d\) biến thành chính nó khi và chỉ khi vectơ \(\overrightarrow v \) cùng phương với vectơ chỉ phương của \(d.\)
Đường thẳng \(d\) có VTPT \(\vec n = \left( {2; - 1} \right)\) \( \Rightarrow \) VTCP \(\vec u = \left( {1;2} \right)\).
Đáp án cần chọn là: c
Toán Lớp 12