Trong mặt phẳng tọa độ $Oxy$ cho đồ thị của hàm số \(y = \sin x\). Có bao nhiêu phép tịnh tiến biến đồ thị đó thành chính nó
Phương pháp giải
Sử dụng biểu thức tọa độ của phép tịnh tiến \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\).
Lời giải của Tự Học 365
Ta có: \(y = \sin x = \sin \left( {x + k2\pi } \right) \Rightarrow \left\{ \begin{array}{l}x' = x + k2\pi \\y' = y\end{array} \right. \Rightarrow \overrightarrow u = \left( {k2\pi ;0} \right)\)
Do \(k \in Z\) nên có vô số véc tơ \(\overrightarrow u \) như trên.
Đáp án cần chọn là: d
Toán Lớp 12