Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:
Phương pháp giải
- Tìm tâm và bán kính đường tròn đã cho.
- Xác định ảnh của tâm đường tròn qua phép đối xứng.
- Viết phương trình đường tròn ảnh và kết luận.
Lời giải của Tự Học 365
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = 2.\)
Ta có \(I\left( {1; - 2} \right) \Rightarrow I'\left( {1;2} \right)\) đối xứng với \(I\) qua \(Ox\) và \(R = 2 \Rightarrow R' = R = 2.\)
Do đó \(\left( {C'} \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4.\)
Đáp án cần chọn là: c
Toán Lớp 12