Câu 37208 - Tự Học 365
Câu hỏi Thông hiểu

Trong mặt phẳng tọa độ \(Oxy\) cho đường tròn \(\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 4\). Phép đối xứng trục \(Ox\) biến đường tròn \(\left( C \right)\) thành đường tròn \(\left( {C'} \right)\) có phương trình là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tìm tâm và bán kính đường tròn đã cho.

- Xác định ảnh của tâm đường tròn qua phép đối xứng.

- Viết phương trình đường tròn ảnh và kết luận.

Xem lời giải

Lời giải của Tự Học 365

Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\) và bán kính \(R = 2.\)

Ta có \(I\left( {1; - 2} \right) \Rightarrow I'\left( {1;2} \right)\) đối xứng với \(I\) qua \(Ox\) và \(R = 2 \Rightarrow R' = R = 2.\)

Do đó \(\left( {C'} \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4.\)

Đáp án cần chọn là: c

Toán Lớp 12