Câu 37211 - Tự Học 365
Câu hỏi Thông hiểu

Cho $x$ là số thực dương. Khai triển nhị thức Newton của biểu thức ${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}}$ ta có hệ số của số hạng chứa ${x^m}$ bằng $495.$ Tìm tất cả các giá trị của tham số $m.$ 


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng công thức tổng quát ${{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}\,\,\xrightarrow{{}}$ Tìm hệ số của số hạng cần tìm.

Xem lời giải

Lời giải của Tự Học 365

Theo khai triển nhị thức Newton, ta có

${\left( {{x^2} + \dfrac{1}{x}} \right)^{12}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{\left( {{x^2}} \right)^{12\, - \,k}}.{\left( {\dfrac{1}{x}} \right)^k} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{x^{24\, - \,2k}}.{x^{ - \,k}} = \sum\limits_{k\, = \,0}^{12} {C_{12}^k} .{x^{24\, - \,3k}}.$

Hệ số của số hạng chứa ${x^m}$ ứng với $\left\{ \begin{array}{l}C_{12}^k = 495\\24 - 3k = m\end{array} \right. \Leftrightarrow \dfrac{{12!}}{{\left( {12 - k} \right)!.k!}} = 495 \Rightarrow \left[ \begin{array}{l}k = 4 \Rightarrow m = 12\\k = 8 \Rightarrow m = 0\end{array} \right..$

Đáp án cần chọn là: c

Toán Lớp 12