Câu 37210 - Tự Học 365
Câu hỏi Vận dụng

Tính nguyên hàm $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}{\rm{d}}x} $ được kết quả nào sau đây?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Đặt \(\ln x = t\) rồi dùng phương pháp nguyên hàm từng phần tìm nguyên hàm hàm số thu được.

Xem lời giải

Lời giải của Tự Học 365

Đặt $\ln x = t \Rightarrow dt = \dfrac{{dx}}{x}$.

Suy ra $I = \int {\dfrac{{\ln \left( {lnx} \right)}}{x}dx}  = \int {\ln t\,dt} $.

Đặt $\left\{ \begin{array}{l}u = \ln t\\dv = dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{{dt}}{t}\\v = t\end{array} \right.$. Theo công thức tính nguyên hàm từng phần, ta có:

$I = t\ln t - \int {dt} $ $ = t\ln t - t + C = \ln x.\ln \left( {\ln x} \right) - \ln x + C$.

Đáp án cần chọn là: c

Toán Lớp 12