Câu 37201 - Tự Học 365
Câu hỏi Nhận biết

Ta có \( - \dfrac{{x + a}}{{{e^x}}}\) là một họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{e^x}}}\), khi đó:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{ - x}}dx\end{array} \right.\), sau đó tính nguyên hàm và suy ra $a$.

Xem lời giải

Lời giải của Tự Học 365

\(F\left( x \right) = \int {\dfrac{x}{{{e^x}}}dx}  = \int {x{e^{ - x}}dx} \)

Đặt \(\left\{ \begin{array}{l}u = x\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - {e^{ - x}}\end{array} \right. \Rightarrow F\left( x \right) =  - x{e^{ - x}} + \int {{e^{ - x}}dx}  + C \\ =  - x{e^{ - x}} - {e^{ - x}} + C =  - \left( {x + 1} \right){e^{ - x}} + C =  - \dfrac{{x + 1}}{{{e^x}}} + C.\)

\( - \dfrac{{x + a}}{{{e^x}}}\) là một họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{e^x}}} \Rightarrow \left\{ \begin{array}{l}a = 1\\C = 0\end{array} \right..\)

Đáp án cần chọn là: d

Toán Lớp 12