Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là:
Phương pháp giải
Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.
Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng f(x) thì đó là đáp án đúng.
Lời giải của Tự Học 365
Thử từng đáp án ta có :
Thử đáp án A : \(\left( {2{x^2}\ln x + 3{x^2}} \right) ' = 4x\ln x + 2{x^2}.\dfrac{1}{x} + 6x = 4x\ln x + 8x\) . Nên loại A.
Thử đáp án B: \(\left( {2{x^2}\ln x + {x^2}} \right)' = 4x\ln x + 2{x^2}\dfrac{1}{x} + 2x = 4x\ln x + 2x + 2x = 4x\left( {1 + \ln x} \right)\)
\( \Rightarrow 2{x^2}\ln x + {x^2}\) là một nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right).\)
\( \Rightarrow \) Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là \(2{x^2}\ln x + {x^2} + C.\)
Đáp án cần chọn là: d
Toán Lớp 12