Câu 37224 - Tự Học 365
Câu hỏi Thông hiểu

Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là:


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.

Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng f(x) thì đó là đáp án đúng.

Xem lời giải

Lời giải của Tự Học 365

Thử từng đáp án ta có :

Thử đáp án A : \(\left( {2{x^2}\ln x + 3{x^2}} \right) ' = 4x\ln x + 2{x^2}.\dfrac{1}{x} + 6x = 4x\ln x + 8x\) . Nên loại A.

Thử đáp án B: \(\left( {2{x^2}\ln x + {x^2}} \right)' = 4x\ln x + 2{x^2}\dfrac{1}{x} + 2x = 4x\ln x + 2x + 2x = 4x\left( {1 + \ln x} \right)\)

\( \Rightarrow 2{x^2}\ln x + {x^2}\)  là một nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right).\)

\( \Rightarrow \) Họ nguyên hàm của hàm số \(f\left( x \right) = 4x\left( {1 + \ln x} \right)\) là \(2{x^2}\ln x + {x^2} + C.\)

Đáp án cần chọn là: d

Toán Lớp 12