Câu 37222 - Tự Học 365
Câu hỏi Thông hiểu

Cho F(x) là một nguyên hàm của hàm số $f\left( x \right) = x\ln x$. Tính $F''\left( x \right)$ ?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

$F\left( x \right)$ là nguyên hàm của hàm số f(x) $ \Leftrightarrow F\left( x \right) = \int {f\left( x \right)dx}  \Rightarrow f\left( x \right) = F'\left( x \right).$

Xem lời giải

Lời giải của Tự Học 365

$F\left( x \right)$ là nguyên hàm của hàm số f(x)

$ \Leftrightarrow F\left( x \right) = \int {f\left( x \right)dx}  \Leftrightarrow F'\left( x \right) = f\left( x \right) = x\ln x \Leftrightarrow F''\left( x \right) = \ln x + x.\dfrac{1}{x} = 1 + \ln x$

Đáp án cần chọn là: c

Toán Lớp 12