Câu 37210 - Tự Học 365
Câu hỏi Vận dụng cao

Tính \(F\left( x \right) = \int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {4{{\sin }^2}x + 2{{\cos }^2}x + 3} }}} d{\rm{x}}\). Hãy chọn đáp án đúng.


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Biến đổi hàm số dưới dấu nguyên hàm rồi sử dụng phương pháp đổi biến tìm nguyên hàm.

Xem lời giải

Lời giải của Tự Học 365

Ta có: $4{\sin ^2}x + 2{\cos ^2}x + 3 = \frac{{4\left( {1 - \cos 2x} \right)}}{2} + \frac{{2\left( {1 + \cos 2x} \right)}}{2} + 3 = 6 - \cos 2x$

\(\int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {4{{\sin }^2}x + 2{{\cos }^2}x + 3} }}} d{\rm{x}} = \int {\dfrac{{\sin 2{\rm{x}}}}{{\sqrt {6 - \cos 2{\rm{x}}} }}} d{\rm{x}}\) \({\rm{ = }}\int {\dfrac{{d\left( {6 - \cos 2{\rm{x}}} \right)}}{{2\sqrt {6 - \cos 2{\rm{x}}} }}}  = \sqrt {6 - \cos 2{\rm{x}}}  + C\)

Đáp án cần chọn là: a

Toán Lớp 12