Câu 37209 - Tự Học 365
Câu hỏi Vận dụng cao

Biết hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x) = \dfrac{{\ln x}}{{x\sqrt {{{\ln }^2}x + 3} }}\) có đồ thị đi qua điểm \(\left( {e;2016} \right)\). Khi đó giá trị \(F\left( 1 \right)\) là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Đổi biến đặt \(t = \sqrt {{{\ln }^2}x + 3} \)

Xem lời giải

Lời giải của Tự Học 365

Đặt \(t = \sqrt {{{\ln }^2}x + 3} \) ta có: \(\int {\dfrac{{\ln x}}{{x\sqrt {{{\ln }^2}a + 3} }}dx}  = \int {\dfrac{{tdt}}{t}}  = t + C = \sqrt {{{\ln }^2}x + 3}  + C\)

Do đó \(F\left( x \right) = \sqrt {{{\ln }^2}x + 3}  + C\).

\(F\left( e \right) = 2016 \Rightarrow C = 2014 \Rightarrow F\left( x \right) = \sqrt {{{\ln }^2}x + 3}  + 2014 \Rightarrow F\left( 1 \right) = \sqrt 3  + 2014\)

Đáp án cần chọn là: a

Toán Lớp 12