Câu 37207 - Tự Học 365
Câu hỏi Vận dụng

Cho nguyên hàm \(I = \int {\dfrac{{dx}}{{\sqrt {{{\left( {1 + {x^2}} \right)}^3}} }}} \). Nếu đặt \(x = \tan t,\) \(t \in \left( { - \dfrac{\pi }{2};\dfrac{\pi }{2}} \right)\)  thì:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Tính \(dt\) theo \(dx\)

- Thay vào tìm \(I\) và kết luận.

Xem lời giải

Lời giải của Tự Học 365

Đặt \(x = \tan t,\,t \in \left( { - \dfrac{\pi }{2};\dfrac{\pi }{2}} \right)\) \( \Rightarrow dx = \dfrac{{dt}}{{{{\cos }^2}t}} = \left( {1 + {{\tan }^2}t} \right)dt = \left( {1 + {x^2}} \right)dt\)

Do đó \(I = \int {\dfrac{{dx}}{{\sqrt {{{\left( {1 + {x^2}} \right)}^3}} }}}  = \int {\dfrac{{\left( {1 + {x^2}} \right)dt}}{{\left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} }}} \) \( = \int {\dfrac{{dt}}{{\sqrt {1 + {{\tan }^2}t} }}}  = \int {\dfrac{{dt}}{{\dfrac{1}{{\cos t}}}}}  = \int {\cos tdt} \)

Đáp án cần chọn là: a

Toán Lớp 12