Cho nguyên hàm $I = \int {\sqrt {1 - {x^2}} \,{\rm{d}}x} ,\,\,\,x \in \left[ {0;\dfrac{\pi }{2}} \right]$, nếu đặt $x = \sin t$ thì nguyên hàm I tính theo biến t trở thành:
Phương pháp giải
- Bước 1: Đặt \(x = u\left( t \right) = \sin t\).
- Bước 2: Lấy vi phân 2 vế \(dx = u'\left( t \right)dt\).
- Bước 3: Biến đổi \(f\left( x \right)dx = f\left( {u\left( t \right)} \right).u'\left( t \right)dt = g\left( t \right)dt\).
- Bước 4: Tính nguyên hàm theo công thức \(\int {f\left( x \right)dx} = \int {g\left( t \right)dt} = G\left( t \right) + C\)
Lời giải của Tự Học 365
Đặt $x = \sin t \Leftrightarrow dx = \cos t\,dt$ và $1 - {x^2} = 1 - {\sin ^2}t = {\cos ^2}t$
Suy ra
$\begin{array}{l}\int {\sqrt {1 - {x^2}} \,{\rm{d}}x} = \int {\sqrt {{{\cos }^2}t} \,\cos t\,{\rm{d}}t} = \int {{{\cos }^2}t\,{\rm{d}}t} = \int {\dfrac{{1 + \cos 2t}}{2}\,{\rm{d}}t} \\ = \int {\left( {\dfrac{1}{2} + \dfrac{1}{2}\cos 2t} \right){\rm{d}}t} = \dfrac{t}{2} + \dfrac{{\sin 2t}}{4} + C.\end{array}$
(Vì \(x \in \left[ {0;\dfrac{\pi }{2}} \right] \Rightarrow \cos x > 0 \Rightarrow \sqrt {{{\cos }^2}x} = \cos x\))
Vậy $I = \dfrac{t}{2} + \dfrac{{\sin 2t}}{4} + C.$
Đáp án cần chọn là: c
Toán Lớp 12