Cho\(F\left( x \right) = \int {\dfrac{x}{{1 + \sqrt {1 + x} }}dx} \) và \(F\left( 3 \right) - F\left( 0 \right) = \dfrac{a}{b}\) là phân số tối giản , $a > 0$. Tổng \(a + b\) bằng ?
Phương pháp giải
- Bước 1: Đặt \(t = u\left( x \right) = \sqrt {1 + x} \)
- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\)
- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\)
- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx} = \int {g\left( t \right)dt} = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\)
Lời giải của Tự Học 365
\(F\left( x \right) = \int {\dfrac{x}{{1 + \sqrt {1 + x} }}dx} \)
Đặt \(\sqrt {1 + x} = t \Rightarrow 1 + x = {t^2} \Rightarrow x = {t^2} - 1 \Rightarrow dx = 2tdt\)
\(\begin{array}{l} \Rightarrow F\left( x \right) = \int {\dfrac{{{t^2} - 1}}{{1 + t}}.2tdt = 2\int {t\left( {t - 1} \right)dt = 2\int {\left( {{t^2} - t} \right)} } } dt \\ = \dfrac{2}{3}{t^3} - {t^2} + C = \dfrac{2}{3}\left( {1 + x} \right)\sqrt {1 + x} - \left( {1 + x} \right) + C\\ \Rightarrow F\left( 3 \right) - F\left( 0 \right) = \dfrac{2}{3}\left( {1 + 3} \right)\sqrt {1 + 3} - \left( {1 + 3} \right) - \dfrac{2}{3}\left( {1 + 0} \right)\sqrt {1 + 0} + \left( {1 + 0} \right) = \dfrac{5}{3}\\ \Rightarrow a = 5,b = 3 \Rightarrow a + b = 8\end{array}\)
Đáp án cần chọn là: c
Toán Lớp 12