Câu 37202 - Tự Học 365
Câu hỏi Vận dụng

Cho hàm số $f\left( x \right) = \dfrac{1}{{{{\sin }^2}x}}$. Nếu $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right)$ và đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ thì  là:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Sử dụng công thức nguyên hàm hàm sơ cấp để tìm họ \(F\left( x \right)\).

- Điểm \(M \in \)đồ thị hàm số \(y = F\left( x \right)\) nếu tọa độ của \(M\) thỏa mãn phương trình \(F\left( x \right)\).

Xem lời giải

Lời giải của Tự Học 365

Ta có: $\int {f\left( x \right)dx}  = \int {\dfrac{1}{{{{\sin }^2}x}}dx}  =  - \cot x + C = F\left( x \right)$

Đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ nên $F\left( \dfrac{\pi }{3} \right)=0$

$ \Leftrightarrow - \cot \dfrac{\pi }{3} + C = 0 \Leftrightarrow C = \dfrac{1}{{\sqrt 3 }} \Rightarrow F\left( x \right) =  - \cot x + \dfrac{1}{{\sqrt 3 }}$

Đáp án cần chọn là: a

Toán Lớp 12