Câu 37221 - Tự Học 365
Câu hỏi Thông hiểu

Giải phương trình $1 + {\rm{sin}}x + {\rm{cos}}x + {\rm{tan}}x = 0$.


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

- Biến đổi phương trình về dạng tích, giải phương trình tích.

- Kiểm tra điều kiện và kết luận nghiệm.

Xem lời giải

Lời giải của Tự Học 365

ĐK: \(\cos x e 0\).

\(1 + {\rm{sin}}x + {\rm{cos}}x + {\rm{tan}}x = 0\) \(\Leftrightarrow \left( {1 + \tan x} \right) + \left( {\sin x + \cos x} \right) = 0\) \( \Leftrightarrow \left( {1 + \dfrac{{\sin x}}{{\cos x}}} \right) + \left( {\sin x + \cos x} \right) = 0\) \( \Leftrightarrow \dfrac{{\sin x + \cos x}}{{\cos x}} + \left( {\sin x + \cos x} \right) = 0\) \( \Leftrightarrow \left( {\sin x + \cos x} \right)\left( {\dfrac{1}{{\cos x}} + 1} \right) = 0\) \( \Leftrightarrow \left( {\sin x + \cos x} \right).\dfrac{{1 + \cos x}}{{\cos x}} = 0\) \( \Leftrightarrow \left[ \begin{array}{l}\sin x + \cos x = 0\\\cos x + 1 = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\sin x =  - \cos x\\\cos x =  - 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\dfrac{{\sin x}}{{\cos x}} =  - 1\\\cos x =  - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\tan x =  - 1\\\cos x =  - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k\pi \\x = \pi  + k2\pi \end{array} \right.\left( {TM} \right)\)

Đáp án cần chọn là: d

Toán Lớp 12