Nghiệm của phương trình \(4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\) là:
Phương pháp giải
- Sử dụng các công thức biến đổi lượng giác để biến đổi phương trình thành phương trình bậc hai đối với \(\cos 2x\).
- Đặt \(t = \cos 2x\left( { - 1 \le t \le t} \right)\), giải phương trình ẩn \(t\) rồi giải phương trình tìm \(x\).
Lời giải của Tự Học 365
\(\begin{array}{l}4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\\ \Leftrightarrow 4\left( {1 - {{\cos }^2}2x} \right) + 4 + 4\cos 2x - 9 = 0\\ \Leftrightarrow 4 - 4{\cos ^2}2x + 4\cos 2x - 5 = 0 \\\Leftrightarrow - 4{\cos ^2}2x + 4\cos 2x - 1 = 0\end{array}\)
Đặt \(\cos 2x = t\,\,\left( { - 1 \le t \le 1} \right)\) khi đó phương trình có dạng
\( - 4{t^2} + 4t - 1 = 0 \Leftrightarrow - {\left( {2t - 1} \right)^2} = 0 \) \(\Leftrightarrow t = \dfrac{1}{2}\left( {tm} \right)\)
\(\begin{array}{l} \Leftrightarrow \cos 2x = \dfrac{1}{2} \Leftrightarrow 2x = \pm \dfrac{\pi }{3} + k2\pi \\ \Leftrightarrow x = \pm \dfrac{\pi }{6} + k\pi \left( {k \in Z} \right)\end{array}\)
Đáp án cần chọn là: a
Toán Lớp 12