Phương trình \(\sin 2x + 3\sin 4x = 0\) có nghiệm là:
Phương pháp giải
Sử dụng công thức nhân đôi \(\sin 4x = 2\sin 2x\cos 2x\) biến đổi phương trình thành dạng tích.
Lời giải của Tự Học 365
\(\begin{array}{l}\sin 2x + 3\sin 4x = 0 \Leftrightarrow \sin 2x + 6\sin 2x\cos 2x = 0\\ \Leftrightarrow \sin 2x\left( {1 + 6\cos 2x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 + 6\cos 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos 2x = - \dfrac{1}{6}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \pm \arccos \left( { - \dfrac{1}{6}} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k\pi }}{2}\\x = \pm \dfrac{1}{2}\arccos \left( { - \dfrac{1}{6}} \right) + k\pi \end{array} \right.\left( {k \in Z} \right)\end{array}\)
Đáp án cần chọn là: a
Toán Lớp 12