Câu 37227 - Tự Học 365
Câu hỏi Thông hiểu

Cho bốn điểm \(A\left( {1;2} \right)\), \(B\left( {4;0} \right)\), \(C\left( {1; - 3} \right)\), \(D\left( {7; - 7} \right)\). Vị trí tương đối của hai đường thẳng \(AB\) và \(CD\) là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Với trường hợp \({a_2}.{b_2}.{c_2} e 0\) khi đó

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} e \dfrac{{{b_1}}}{{{b_2}}}\) thì hai đường thẳng cắt nhau.

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} e \dfrac{{{c_1}}}{{{c_2}}}\)   thì hai đường thẳng song song nhau.

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\)   thì hai đường thẳng trùng nhau.

+ Nếu \({a_1}{a_2} + {b_1}{b_2} = 0\) thì hai đường thẳng vuông góc.

Xem lời giải

Lời giải của Tự Học 365

\(\overrightarrow {AB}  = \left( {3; - 2} \right)\), \(\overrightarrow {CD}  = \left( {6; - 4} \right)\) và \(\overrightarrow {AC}  = \left( {0; - 5} \right)\).

Ta thấy: \(\overrightarrow {CD}  = 2\overrightarrow {AB}  \Rightarrow \overrightarrow {CD} \) và \(\overrightarrow {AB} \) cùng phương.

Lại có: \(\dfrac{0}{3} e \dfrac{{ - 5}}{{ - 2}} \Rightarrow \) \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương hay ba điểm \(A,B,C\) không thẳng hàng.

Vậy hai đường thẳng \(AB\) và \(CD\) song song.

Đáp án cần chọn là: a

Toán Lớp 12