Câu 37225 - Tự Học 365
Câu hỏi Thông hiểu

Trong mặt phẳng \(Oxy\), đường thẳng \(\Delta :3x - 2y + 7 = 0\) cắt đường thẳng nào sau đây?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Xét vị trí tương đối của hai đường thẳng, sử dụng lý thuyết:

Với trường hợp \({a_2}.{b_2}.{c_2} e 0\) khi đó

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} e \dfrac{{{b_1}}}{{{b_2}}}\) thì hai đường thẳng cắt nhau.

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} e \dfrac{{{c_1}}}{{{c_2}}}\)   thì hai đường thẳng song song nhau.

+ Nếu \(\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\)   thì hai đường thẳng trùng nhau.

+ Nếu \({a_1}{a_2} + {b_1}{b_2} = 0\) thì hai đường thẳng vuông góc.

Xem lời giải

Lời giải của Tự Học 365

Ta có \(\Delta :3x - 2y + 7 = 0\).

Xét \({d_3}: - 3x + 2y + 7 = 0\) có \(\dfrac{3}{{ - 3}} = \dfrac{2}{{ - 2}} e \dfrac{7}{7}\) nên \(\Delta {\rm{//}}{d_3}\).

Tương tự đối với \({d_2}\),\({d_4}\) song song với \(\Delta \).

Xét \({d_1}:3x + 2y - 5 = 0\) có \(\dfrac{3}{3} e \dfrac{{ - 2}}{2}\) nên \({d_1}\) cắt \(\Delta \).

Đáp án cần chọn là: b

Toán Lớp 12