Câu 37215 - Tự Học 365
Câu hỏi Vận dụng

Đồ thị hàm số $y = \dfrac{{ax + b}}{{cx + d}}$ như hình vẽ bên

Chọn khẳng định đúng


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Tìm các tiệm cận đứng, tiệm cận ngang của đồ thị hàm số.

- Tìm các giao điểm của đồ thị hàm số với hai trục tọa độ.

- Xét tính đơn điệu của hàm số.

- Kết hợp các kết quả trên ta được điều kiện của $a,b,c,d$.

Xem lời giải

Lời giải của Tự Học 365

Đồ thị hàm số $y = \dfrac{{ax + b}}{{cx + d}}$:

- TCĐ $x =  - \dfrac{d}{c} < 0 \Rightarrow cd > 0$

- TCN $y = \dfrac{a}{c} > 0 \Rightarrow ac > 0$

$ \Rightarrow ac.cd > 0 \Rightarrow ad > 0 \Rightarrow $Loại A, B.

- $y' = \dfrac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}} > 0 \Rightarrow ad > bc$

- Cắt $Oy:x = 0 \Rightarrow y = \dfrac{b}{d} < 0 \Rightarrow bd < 0$

- Cắt $Ox:y = 0 \Rightarrow x =  - \dfrac{b}{a} > 0 \Rightarrow ab < 0$

$ac > 0;ab < 0$ nên $ac.ab < 0 \Rightarrow bc < 0 \Rightarrow $ Loại D

Đáp án cần chọn là: c

Toán Lớp 12