Câu 37213 - Tự Học 365
Câu hỏi Nhận biết

Cho một mặt cầu bán kính bằng $1$. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Trong các hình chóp tam giác đều ngoại tiếp một mặt cầu, hình tứ diện đều có thể tích nhỏ nhất.

- Bán kính mặt cầu nội tiếp tứ diện đều cạnh \(a\) là \(r = \dfrac{{a\sqrt 6 }}{{12}}\)

- Thể tích tứ diện đều cạnh \(a\) là \(\dfrac{{{a^3}\sqrt 2 }}{{12}}\)

Xem lời giải

Lời giải của Tự Học 365

Áp dụng các công thức trong tứ diện đều cạnh $a$

Bán kính mặt cầu nội tiếp $r = \dfrac{{a\sqrt 6 }}{{12}} = 1 \Rightarrow a = 2\sqrt 6 $

Thể tích tứ diện đều đó là $V = \dfrac{{{a^3}\sqrt 2 }}{{12}} = 8\sqrt 3 $

Đáp án cần chọn là: b

Toán Lớp 12