Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là
Phương pháp giải
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp có cạnh bên vuông góc với đáy là \(R = \sqrt {\dfrac{{{h^2}}}{4} + R_{day}^2} \), trong đó \(h\) là chiều cao của khối chóp và \({R_{day}}\) là bán kính đường tròn ngoại tiếp đa giác đáy.
Lời giải của Tự Học 365
Xét tam giác vuông \(ABC\) ta có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \).
Tam giác \(ABC\) vuông tại \(A\) nên nội tiếp đường tròn đường kính \(BC\).
Gọi \({R_{day}}\) là bán kính đường tròn ngoại tiếp tam giác \(ABC \Rightarrow {R_{day}} = \dfrac{{BC}}{2} = \sqrt 5 \).
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\) :
\(R = \sqrt {\dfrac{{S{A^2}}}{4} + R_{day}^2} = \sqrt {\dfrac{5}{4} + 5} = \dfrac{5}{2}\).
Đáp án cần chọn là: a
Toán Lớp 12