Câu 37202 - Tự Học 365
Câu hỏi Thông hiểu

Hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ có $SA$ vuông góc với mặt phẳng $\left( {ABC} \right)$  và có $SA = a,AB = b,AC = c$. Mặt cầu đi qua các đỉnh $A,B,C,S$ có bán kính $r$ bằng :


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng công thức tính bán kính mặt cầu ngoại tiếp tứ diện vuông \(R = \sqrt {\dfrac{{{a^2} + {b^2} + {c^2}}}{4}} \)

Xem lời giải

Lời giải của Tự Học 365

Vì \(SA \bot \left( {ABC} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\end{array} \right.\).

Mà \(AB \bot AC\) nên hình chóp \(S.ABC\) là tứ diện vuông.

Áp dụng công thức tính bán kính mặt cầu ngoại tiếp tứ diện vuông ta được \(R = \sqrt {\dfrac{{{a^2} + {b^2} + {c^2}}}{4}}  = \dfrac{{\sqrt {{a^2} + {b^2} + {c^2}} }}{2}\) 

Đáp án cần chọn là: c

Toán Lớp 12