Câu 37202 - Tự Học 365
Câu hỏi Thông hiểu

So sánh hai số \(m\) và \(n\) nếu \({\left( {\sqrt 2  - 1} \right)^m} < {\left( {\sqrt 2  - 1} \right)^n}\)


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng so sánh lũy thừa: Với \(0 < a < 1\) thì \({a^m} > {a^n}\) suy ra \(m < n\)

Xem lời giải

Lời giải của Tự Học 365

Do \(0 < \sqrt 2  - 1 < 1\) nên \({\left( {\sqrt 2  - 1} \right)^m} < {\left( {\sqrt 2  - 1} \right)^n} \Leftrightarrow m > n\).

Đáp án cần chọn là: a

Toán Lớp 12