Câu 37215 - Tự Học 365
Câu hỏi Nhận biết

Với điều kiện các biểu thức đều có nghĩa, đẳng thức nào dưới đây không đúng?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Sử dụng các công thức biến đổi logarit:

${\log _a}{b^n} = n{\log _a}b\left( {0 < a e 1;b > 0} \right)$                                         

${\log _a}\dfrac{1}{b} =  - {\log _a}b\left( {0 < a e 1;b > 0} \right)$

${\log _a}\sqrt[n]{b} = {\log _a}{b^{\dfrac{1}{n}}} = \dfrac{1}{n}{\log _a}b\left( {0 < a e 1;b > 0;n > 0;n \in {N^*}} \right)$

Xem lời giải

Lời giải của Tự Học 365

Ta có:

${\log _a}{b^n} = n{\log _a}b\left( {0 < a e 1;b > 0} \right)$                                         

${\log _a}\dfrac{1}{b} =  - {\log _a}b\left( {0 < a e 1;b > 0} \right)$

${\log _a}\sqrt[n]{b} = {\log _a}{b^{\dfrac{1}{n}}} = \dfrac{1}{n}{\log _a}b\left( {0 < a e 1;b > 0;n > 0;n \in {N^*}} \right)$

Vậy đẳng thức không đúng là ${\log _a}\sqrt[n]{b} =  - n{\log _a}b$.

Đáp án cần chọn là: d

Toán Lớp 12