Câu 37226 - Tự Học 365
Câu hỏi Thông hiểu

Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Sử dụng định nghĩa phép vị tự --- Xem chi tiết

Xem lời giải

Lời giải của Tự Học 365

Ta có: \(A'A = 2SA',B'B = 2SB',C'C = 2SC' \)

$\Rightarrow \overrightarrow {SA'} = \dfrac{1}{3}\overrightarrow {SA} ,\overrightarrow {SB'} = \dfrac{1}{3}\overrightarrow {SB} ,\overrightarrow {SC'} = \dfrac{1}{3}\overrightarrow {SC} $

Do đó phép vị tự tâm \(S\) tỉ số \(k = \dfrac{1}{3}\) biến các điểm \(A,B,C\) thành \(A',B',C'\).

Đáp án cần chọn là: c

Toán Lớp 12