Câu 37230 - Tự Học 365
Câu hỏi Nhận biết

Cho hai đường thẳng \({d_1}:2x - 4y - 3 = 0\) và \({d_2}:3x - y + 17 = 0\). Số đo góc giữa \({d_1}\) và \({d_2}\) là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng công thức tính góc giữa hai đường thẳng: \(\cos \varphi  = \dfrac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)

Xem lời giải

Lời giải của Tự Học 365

Ta có \(\cos \left( {{d_1},{d_2}} \right) = \dfrac{{\left| {2.3 + \left( { - 4} \right).\left( { - 1} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 4} \right)}^2}} .\sqrt {{3^3} + {{\left( { - 1} \right)}^2}} }}\) \( = \dfrac{{10}}{{10\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\)

Suy ra số đo góc giữa \({d_1}\) và \({d_2}\) là \(\dfrac{\pi }{4}\).

Đáp án cần chọn là: a

Toán Lớp 12