Câu 37224 - Tự Học 365
Câu hỏi Vận dụng

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật với $AC = 2a,{\rm{ }}BC = a$. Đỉnh $S$ cách

đều các điểm $A,{\rm{ }}B,{\rm{ }}C$. Tính khoảng cách \(d\) từ trung điểm $M$ của $SC$ đến mặt phẳng $\left( {SBD} \right)$.


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Gọi \(O\) là trung điểm \(AC\), suy ra \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\). (Do tam giác $ABC$ vuông tại $B$).

Do đỉnh $S$ cách đều các điểm $A,{\rm{ }}B,{\rm{ }}C$ nên $SO \bot \left( {ABCD} \right)$.

Ta có

$\begin{array}{l}MC \cap \left( {SBD} \right) = S \Rightarrow \dfrac{{d\left( {M;\left( {SBD} \right)} \right)}}{{d\left( {C;\left( {SBD} \right)} \right)}} = \dfrac{{MS}}{{CS}} = \dfrac{1}{2}\\ \Rightarrow d\left( {M;\left( {SBD} \right)} \right) = \dfrac{1}{2}d\left( {C;\left( {SBD} \right)} \right)\end{array}$.

Kẻ \(CE \bot BD\) ta có: \(\left\{ \begin{array}{l}CE \bot BD\\CE \bot SO\end{array} \right. \Rightarrow CE \bot \left( {SBD} \right) \Rightarrow d\left( {C;\left( {SBD} \right)} \right) = CE = \dfrac{{CB.CD}}{{\sqrt {C{B^2} + C{D^2}} }} = \dfrac{{a\sqrt 3 }}{2}.\)

Vậy \(d\left( {M;\left( {SBD} \right)} \right) = \dfrac{1}{2}CE = \dfrac{{a\sqrt 3 }}{4}\).

Đáp án cần chọn là: a

Toán Lớp 12