Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = a,{\rm{ }}AD = 2a\). Cạnh bên \(SA\) vuông góc với đáy, góc giữa \(SD\) với đáy bằng \({60^0}.\) Tính khoảng cách \(d\) từ điểm \(C\) đến mặt phẳng \(\left( {SBD} \right)\) theo \(a\).
Phương pháp giải
Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng
Lời giải của Tự Học 365

Xác định \({60^0} = \widehat {\left( {SD,\left( {ABCD} \right)} \right)} = \widehat {\left( {SD,AD} \right)} = \widehat {SDA}\) và \(SA = AD.\tan \widehat {SDA} = 2a\sqrt 3 \).
Gọi $O$ là tâm hình chữ nhật $ABCD$ ta có
$\begin{array}{l}CA \cap \left( {SBD} \right) = O \Rightarrow \dfrac{{d\left( {C;\left( {SBD} \right)} \right)}}{{d\left( {A;\left( {SBD} \right)} \right)}} = \dfrac{{CO}}{{AO}} = 1\\ \Rightarrow d\left( {C;\left( {SBD} \right)} \right) = d\left( {A;\left( {SBD} \right)} \right)\end{array}$.
Trong $(ABCD)$ kẻ \(AE \bot BD\) và trong $(SAE)$ kẻ \(AK \bot SE\,\,\,\left( 1 \right)\).
Ta có: \(\left\{ \begin{array}{l}BD \bot AE\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAE} \right) \Rightarrow BD \bot AK\,\,\,\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow AK \bot \left( {SBD} \right) \Rightarrow d\left( {A;\left( {SBD} \right)} \right) = AK\).
Tam giác vuông \(BAD\), có \(AE = \dfrac{{AB.AD}}{{\sqrt {A{B^2} + A{D^2}} }} = \dfrac{{2a}}{{\sqrt 5 }}\).
Tam giác vuông \(SAE\), có \(AK = \dfrac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \dfrac{{a\sqrt 3 }}{2}\).
Vậy $d\left( {C;\left( {SBD} \right)} \right) = AK = \dfrac{{a\sqrt 3 }}{2}.$
Đáp án cần chọn là: a
Toán Lớp 12