Câu 37211 - Tự Học 365
Câu hỏi Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(B\), \(AD = a,\) \(AB = 2a,\) \(BC = 3a,\) \(SA = 2a\), \(H\) là trung điểm cạnh \(AB\), \(SH\) là đường cao của hình chóp \(S.ABCD\). Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\).


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Ta có \(SH = a\sqrt 3 ;\)\(HC = a\sqrt {10} ;\) \(HD = a\sqrt 2 ;\) \(DC = a\sqrt 8 \) \( \Rightarrow H{C^2} = H{D^2} + D{C^2}\)

Vậy tam giác \(HDC\) vuông tại \(D\).

Gọi \(M\) là trung điểm của \(CD\).

Ta có: \(\dfrac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \dfrac{{OA}}{{OH}} = \dfrac{{AD}}{{HM}} = \dfrac{{2AD}}{{AD + BC}} = \dfrac{1}{2} \)

\(\Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \dfrac{1}{2}.d\left( {H;\left( {SCD} \right)} \right) = \dfrac{1}{2}.HK\)

Trong đó \(K\) là hình chiếu vuông góc của \(H \) lên \(SD\). Ta có:

\(\dfrac{1}{{H{K^2}}} = \dfrac{1}{{H{D^2}}} + \dfrac{1}{{H{S^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{3{a^2}}} = \dfrac{5}{{6{a^2}}}\)

\( \Rightarrow HK = \dfrac{{a\sqrt 6 }}{{\sqrt 5 }} \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt 6 }}{{2\sqrt 5 }} = \dfrac{{a\sqrt {30} }}{{10}}\).

Đáp án cần chọn là: b

Toán Lớp 12