Câu 37220 - Tự Học 365
Câu hỏi Vận dụng cao

Cho hình hộp chữ nhật $ABCD.A’B’C’D’$ có đáy $ABCD$ là hình vuông cạnh \(a\sqrt 2 \), $AA’ = 2a$. Tính khoảng cách $d$ giữa hai đường thẳng $BD$ và $CD’$.


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Dựa vào phương pháp xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia đưa về tính khoảng cách từ một điểm đến một mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Gọi $I$ là điểm đối xứng của $A$ qua $D$,

suy ra $BCID$ là hình bình hành nên $BD//CI$

Do đó \(d\left( {BD;CD'} \right) = d\left( {BD;\left( {CD'I} \right)} \right) = d\left( {D;\left( {CD'I} \right)} \right).\)

Kẻ \(DE \bot CI\) tại \(E\), kẻ $DK \bot D'E\,\,\left( 1 \right)$ ta có:

\(\left\{ \begin{array}{l}CI \bot DE\\CI \bot DD'\end{array} \right. \Rightarrow CI \bot \left( {DD'E} \right) \Rightarrow CI \bot DK\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow DK \bot \left( {CD'I} \right) \)

\(\Rightarrow d\left( {D;\left( {CD'I} \right)} \right) = DK.\)

Xét tam giác $IAC$, ta có $DE // AC$ (do cùng vuông góc với $CI$) và có $D$ là trung điểm của $AI$ nên suy ra $DE$ là đường trung bình của tam giác $ACI$. Suy ra \(DE = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{{\sqrt 2 }} = a.\)

Tam giác vuông $D'DE$, có $DK = \dfrac{{D'D.DE}}{{\sqrt {D'{D^2} + D{E^2}} }} = \dfrac{{2a.a}}{{\sqrt {4{a^2} + {a^2}} }} = \dfrac{{2a\sqrt 5 }}{5}.$

Đáp án cần chọn là: c

Toán Lớp 12