Câu 37209 - Tự Học 365
Câu hỏi Thông hiểu

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a,$ tam giác $SAD $ đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách $d$ giữa hai đường thẳng $SA$ và $BD.$


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Dựa vào phương pháp xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia đưa về tính khoảng cách từ một điểm đến một mặt phẳng

Xem lời giải

Lời giải của Tự Học 365

Gọi $I$ là trung điểm của $AD$ nên suy ra $SI \bot AD \Rightarrow SI \bot \left( {ABCD} \right)$ và \(SI = \dfrac{{a\sqrt 3 }}{2}\)

Kẻ \(Ax\parallel BD\). Do đó \(d\left( {BD;SA} \right) = d\left( {BD;\left( {SAx} \right)} \right) = d\left( {D;\left( {SAx} \right)} \right) = 2d\left( {I;\left( {SAx} \right)} \right)\) 

(vì \(DI \cap \left( {SAx} \right) = A\) và \(IA = \dfrac{1}{2}DA\))

Kẻ \(IE \bot Ax\), kẻ \(IK \bot SE\,\,\left( 1 \right)\) ta có:

\(\left\{ \begin{array}{l}Ax \bot SI\\Ax \bot IE\end{array} \right. \Rightarrow Ax \bot \left( {SIE} \right) \Rightarrow Ax \bot IK\,\,\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow IK \bot \left( {SAx} \right)\). Khi đó \(d\left( {I;\left( {SAx} \right)} \right) = IK\)

Gọi $F$ là hình chiếu của \(I\) trên \(BD\), ta dễ dàng chứng minh được \(\Delta IAE = \Delta IDF\left( {ch - gn} \right) \) \(\Rightarrow IE = IF = \dfrac{{AO}}{2} = \dfrac{{a\sqrt 2 }}{4}\)

Tam giác vuông \(SIE\), có \(IK = \dfrac{{SI.IE}}{{\sqrt {S{I^2} + I{E^2}} }} = \dfrac{{a\sqrt {21} }}{{14}}\)

Vậy \(d\left( {BD;SA} \right) = 2IK = \dfrac{{a\sqrt {21} }}{7}.\)

Đáp án cần chọn là: c

Toán Lớp 12