Câu 37204 - Tự Học 365
Câu hỏi Nhận biết

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a.$ Cạnh bên $SA$ vuông góc với đáy. Biết rằng đường thẳng $SC$ tạo với đáy một góc ${60^0}.$ Khoảng cách giữa hai đường thẳng $AB$ và $SD$ là


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Dựa vào cách xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng còn lại, đưa về dạng toán tính khoảng cách từ một điểm đến một mặt phẳng.

Xem lời giải

Lời giải của Tự Học 365

Ta có $AC = a\sqrt 2 .$ Do $SA \bot \left( {ABCD} \right)$ và $SC$ tạo với đáy góc ${60^0}$ nên $\widehat {SCA} = {60^0}$.

Khi đó $SA = AC\tan {60^0} = a\sqrt 6 $. Do $\left\{ \begin{array}{l}AB \bot AD\\AB \bot SA\end{array} \right. \Rightarrow AB \bot \left( {SAD} \right)$.

Trong (SAD) dựng $AH \bot SD\,\,\left( 1 \right)$ suy ra \(AB \bot AH\,\,\left( 2 \right)\)  là đoạn vuông góc chung $AB$ và $SD$.

Ta có $AH = \dfrac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \dfrac{{a\sqrt 6 .a}}{{\sqrt {6{a^2} + {a^2}} }} = \dfrac{{a\sqrt {42} }}{7}$

Vậy khoảng cách $d\left( {AB;SD} \right) = \dfrac{{a\sqrt {42} }}{7}.$

Đáp án cần chọn là: a

Toán Lớp 12