Cho hình lăng trụ $ABC.A’B’C’$ có đáy là tam giác đều cạnh có độ dài bằng $2a.$ Hình chiếu vuông góc của $A’$ lên mặt phẳng $(ABC)$ trùng với trung điểm $H$ của $BC.$ Tính khoảng cách $d$ giữa hai đường thẳng $BB’$ và $A’H.$
Phương pháp giải
Dựa vào cách xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng còn lại, đưa về dạng toán tính khoảng cách từ một điểm đến một mặt phẳng
Lời giải của Tự Học 365
Do \(BB'\parallel AA'\) nên \(d\left( {BB';A'H} \right) = d\left( {BB';\left( {AA'H} \right)} \right) = d\left( {B;\left( {AA'H} \right)} \right).\)
Ta có \(\left\{ \begin{array}{l}BH \bot AH\\BH \bot A'H\end{array} \right. \Rightarrow BH \bot \left( {AA'H} \right)\)
Nên \(d\left( {B;\left( {AA'H} \right)} \right) = BH = \dfrac{{BC}}{2} = a.\)
Vậy khoảng cách \(d\left( {BB';A'H} \right) = a\).
Đáp án cần chọn là: b
Toán Lớp 12