Câu 37217 - Tự Học 365
Câu hỏi Vận dụng

Cho hàm số $y = {x^3} + 3{x^2} + m$ có đồ thị $\left( C \right)$.Để đồ thị $\left( C \right)$ cắt trục hoành tại ba điểm $A,B,C$ sao cho $C$ là trung điểm của $AB$ thì  giá trị của tham số $m$ là:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

Đồ thị hàm số bậc ba cắt trục hoành tại ba điểm phân biệt thỏa mãn một điểm là trung điểm của hai điểm còn lại nếu và chỉ nếu trung điểm đó chính là tâm đối xứng của đồ thị hàm số.

Xem lời giải

Lời giải của Tự Học 365

Vì đồ thị của hàm đa thức bậc 3 luôn có tâm đối xứng $I\left( {{x_0};{y_0}} \right)$ có hoành độ ${x_0}$ là nghiệm của phương trình $y''\left( {{x_0}} \right) = 0$

Vậy đồ thị $\left( C \right)$ cắt trục hoành tại ba điểm $A, B, C$ sao cho $C$ là trung điểm $AB$

$ \Leftrightarrow $$C$ là tâm đối xứng của $\left( C \right)$

Ta có:

$y' = 3{x^2} + 6x \Rightarrow y'' = 6x + 6 = 0 \Leftrightarrow x =  - 1 \Rightarrow y = m + 2 \Rightarrow C\left( { - 1;m + 2} \right)$$C \in Ox \Leftrightarrow y = 0 \Leftrightarrow m + 2 = 0 \Leftrightarrow m =  - 2$

Đáp án cần chọn là: a

Toán Lớp 12