Câu 37201 - Tự Học 365
Câu hỏi Thông hiểu

Cho khối lăng trụ tam giác $ABC.A'B'C'$ mà mặt bên $ABB'A'$  có diện tích bằng $4$. Khoảng cách giữa $CC'$  và mặt phẳng $\left( {ABB'A'} \right)$  bằng $7$. Thể tích khối lăng trụ là:


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

- Dựng khối hộp từ lăng trụ tam giác đã cho.

- Tính thể tích khối hộp dựng được và suy ra thể tích khối lăng trụ tam giác cần tính.

Xem lời giải

Lời giải của Tự Học 365

Dựng khối hộp $ABCD.A’B’C’D’$ ta có: \({V_{ABC.A'B'C'}} = \dfrac{1}{2}{V_{ABCD.A'B'C'D'}}\)

Khối hộp \(ABCD.A'B'C'D'\) có hai đáy là $ABB’A’$ và $CDD’C’$

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = {S_{ABB'A'}}.h\)

Trong đó \(h = d\left( {\left( {ABB'A'} \right);\left( {CDD'C'} \right)} \right) = d\left( {CC';\left( {ABB'A'} \right)} \right) = 7\)

\( \Rightarrow {V_{ABCD.A'B'C'D'}} = 4.7 = 28\)

Vậy \({V_{ABC.A'B'C'}} = \dfrac{1}{2}.28 = 14\)

Đáp án cần chọn là: c

Toán Lớp 12