Câu 37216 - Tự Học 365
Câu hỏi Vận dụng

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh bằng \(2a.\)  Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với mặt đáy. Biết thể tích khối chóp \(S.ABCD\) bằng \(\dfrac{{4{a^3}}}{3}\) . Gọi \(\alpha \)  là góc giữa \(SC\) và mặt đáy, tính \(\tan \alpha .\)


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Xác định đường cao bằng kiến thức \(\left\{ \begin{array}{l}\left( P \right) \bot \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\\a \bot d;\,a \subset \left( P \right)\end{array} \right. \Leftrightarrow a \bot \left( Q \right)\)

Góc giữa đường thẳng \(d\) và mặt phẳng \(\left( P \right)\) là góc giữa đường thẳng \(d\) và đường thẳng \(d'\) là hình chiếu của \(d\) lên mặt phẳng \(\left( P \right).\)

Thể tích khối chóp \(V = \dfrac{1}{3}S.h\)

Xem lời giải

Lời giải của Tự Học 365

Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) (do \(\Delta SAB\) cân tại \(S\))

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\SH \bot AB;\,\,\,SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)

Hay \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right) \Rightarrow CH\) là hình chiều của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\)

Do đó góc giữa \(SC\) và mặt đáy là góc \(SCH.\)

Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} \Leftrightarrow \dfrac{{4{a^3}}}{3} = \dfrac{1}{3}SH.4{a^2} \Leftrightarrow SH = a\).

Xét tam giác \(BHC\) vuông tại \(B\), theo định lý Pytago ta có \(HC = \sqrt {B{H^2} + B{C^2}}  = \sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = a\sqrt 5 \)

Xét tam giác \(SHC\) vuông tại \(H\) có \(\tan \angle SCH = \dfrac{{SH}}{{HC}} = \dfrac{a}{{a\sqrt 5 }} = \dfrac{{\sqrt 5 }}{5}\).

Đáp án cần chọn là: d

Toán Lớp 12