Với \(k,n \in N,2 \le k \le n\) thì giá trị của biểu thức $A = C_n^k + 4C_n^{k - 1} + 6C_n^{k - 2} + 4C_n^{k - 3} + C_n^{k - 4} - C_{n + 4}^k + 1$ bằng?
Phương pháp giải
Đối với những bài toán tổng những tổ hợp có chỉ số trên và chỉ số dưới là những số tự nhiên liên tiếp ta sử dụng công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)
Lời giải của Tự Học 365
Trước hết ta chứng minh công thức \(C_n^k + C_n^{k + 1} = C_{n + 1}^{k + 1}\)
\(\begin{array}{l}VT = C_n^k + C_n^{k + 1}\\ = \dfrac{{n!}}{{k!\left( {n - k} \right)!}} + \dfrac{{n!}}{{\left( {k + 1} \right)!\left( {n - k - 1} \right)!}}\\ = \dfrac{{n!}}{{k!\left( {n - k - 1} \right)!}}\left( {\dfrac{1}{{n - k}} + \dfrac{1}{{k + 1}}} \right)\\ = \dfrac{{n!}}{{k!\left( {n - k - 1} \right)!}}.\dfrac{{k + 1 + n - k}}{{\left( {n - k} \right)\left( {k + 1} \right)}}\\ = \dfrac{{n!\left( {n + 1} \right)}}{{k!\left( {k + 1} \right)\left( {n - k - 1} \right)!\left( {n - k} \right)}}\\ = \dfrac{{\left( {n + 1} \right)!}}{{\left( {k + 1} \right)!\left( {n - k} \right)!}} = C_{n + 1}^{k + 1} = VP\end{array}\)
Ta tính giá trị của biểu thức B sau đây:
$\begin{array}{l}B = C_n^k + 4C_n^{k - 1} + 6C_n^{k - 2} + 4C_n^{k - 3} + C_n^{k - 4}\\\,\,\,\,\, = C_n^k + C_n^{k - 1} + 3\left( {C_n^{k - 1} + C_n^{k - 2}} \right) + 3\left( {C_n^{k - 2} + C_n^{k - 3}} \right) + C_n^{k - 3} + C_n^{k - 4}\\\,\,\,\,\, = C_{n + 1}^k + 3C_{n + 1}^{k - 1} + 3C_{n + 1}^{k - 2} + C_{n + 1}^{k - 3}\\\,\,\,\,\, = C_{n + 1}^k + C_{n + 1}^{k - 1} + 2\left( {C_{n + 1}^{k - 1} + C_{n + 1}^{k - 2}} \right) + C_{n + 1}^{k - 2} + C_{n + 1}^{k - 3}\\\,\,\,\,\, = C_{n + 2}^k + 2C_{n + 2}^{k - 1} + C_{n + 2}^{k - 2}\\\,\,\,\,\, = C_{n + 1}^k + C_{n + 1}^{k - 1} + C_{n + 1}^{k - 1} + C_{n + 1}^{k - 2}\\\,\,\,\,\, = C_{n + 3}^k + C_{n + 3}^{k - 1}\\\,\,\,\,\, = C_{n + 4}^k\\ \Rightarrow A = B - C_{n + 4}^k + 1 = C_{n + 4}^k - C_{n + 4}^k + 1 = 1\end{array}$
Đáp án cần chọn là: b
Toán Lớp 12