Câu 37205 - Tự Học 365
Câu hỏi Thông hiểu

Với giá trị của $x$ thỏa mãn \(12C_x^1 + C_{x + 4}^2 = 162\) thì \(A_{x - 1}^2 - C_x^1 = ?\)


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Áp dụng các công thức chỉnh hợp và tổ hợp: \(A_n^k = \dfrac{{n!}}{{\left( {n - k} \right)!}}\,;\,C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\) để tìm x, sau đó thay vào tính giá trị biểu thức

Xem lời giải

Lời giải của Tự Học 365

\(\begin{array}{l}12C_x^1 + C_{x + 4}^2 = 162\\ \Leftrightarrow 12x + \dfrac{{\left( {x + 4} \right)!}}{{2!\left( {x + 2} \right)!}} = 162\\ \Leftrightarrow 12x + \dfrac{{\left( {x + 4} \right)\left( {x + 3} \right)}}{2} = 162\\ \Leftrightarrow 24x + {x^2} + 7x + 12 = 324\\ \Leftrightarrow {x^2} + 31x - 312 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 8\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\x =  - 39\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

\( \Rightarrow A_{x - 1}^2 - C_x^1 = A_7^2 - C_8^1 = 34\)

Đáp án cần chọn là: d

Toán Lớp 12