Câu 37223 - Tự Học 365
Câu hỏi Vận dụng

Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp \(A\), 4 học sinh lớp \(B\) và 3 học sinh lớp \(C\). Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy?


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Liệt kê các trường hợp có thể xảy ra, đếm số cách chọn trong mỗi trường hợp và kết luận.

Xem lời giải

Lời giải của Tự Học 365

Số cách chọn 4 học sinh bất kì từ 12 học sinh là \(C_{12}^4 = 495\) cách.

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau:

\( * \) TH1: Lớp \(A\) có hai học sinh, các lớp \(B,C\) mỗi lớp có 1 học sinh:

Chọn 2 học sinh trong 5 học sinh lớp \(A\) có \(C_5^2\) cách.

Chọn 1 học sinh trong 4 học sinh lớp \(B\) có \(C_4^1\) cách.

Chọn 1 học sinh trong 3 học sinh lớp \(C\) có \(C_3^1\) cách.

Suy ra số cách chọn là \(C_5^2.C_4^1.C_3^1 = 120\) cách.

\( * \) TH2: Lớp \(B\) có 2 học sinh, các lớp \(A,C\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^2.C_3^1 = 90\) cách.

\( * \) TH3: Lớp \(C\) có 2 học sinh, các lớp \(A,B\) mỗi lớp có 1 học sinh:

Tương tự ta có số cách chọn là \(C_5^1.C_4^1.C_3^2 = 60\) cách.

Vậy số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là \(120 + 90 + 60 = 270\) cách.

Số cách chọn ra 4 học sinh thuộc không quá 2 trong 3 lớp trên là \(495 - 270 = 225\) cách.

Đáp án cần chọn là: d

Toán Lớp 12