Câu 37204 - Tự Học 365
Câu hỏi Vận dụng

Trong một tổ học sinh có $5$ em gái và $10$ em trai. Thùy là $1$ trong $5$ em gái và Thiện là $1$ trong $10$ em trai. Thầy chủ nhiệm chọn ra $1$ nhóm $5$ bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?


Đáp án đúng: c
Luyện tập khác

Phương pháp giải

Do ở đây việc tìm trực tiếp sẽ có nhiều trường hợp nên ta sẽ giải quyết bài toán bằng cách gián tiếp, ta sẽ đi tìm bài toán đối. Ta tìm số cách chọn ra $5$  bạn mà trong đó có cả bạn Thùy và Thiện.

Xem lời giải

Lời giải của Tự Học 365

Bài toán đối: tìm số cách chọn ra $5$  bạn mà trong đó có cả bạn Thùy và Thiện.

Bước 1: Chọn nhóm $3$  em trong $13$ em ($13$ em này không tính em Thùy và Thiện) có \(C_{13}^3 = 286\) cách.

Bước 2: Chọn $2$ em Thùy và Thiện có 1 cách.

Vậy theo quy tắc nhân thì ta có $286$  cách chọn $5$  em mà trong đó có cả $2$  em Thùy và Thiện.

Chọn $5$ em bất kì trong số $15$  em thì ta có: \(C_{15}^5 = 3003\) cách.

Vậy theo yêu cầu đề bài thì có tất cả $3003-286 = 2717$ cách chọn mà trong đó có ít nhất một trong hai em Thùy Và Thiện không được chọn.

Đáp án cần chọn là: c

Toán Lớp 12