Câu 37228 - Tự Học 365
Câu hỏi Vận dụng

Cho tập $A = \left\{ {1;2;4;6;7;9} \right\}$. Hỏi có thể lập được từ tập $A$ bao nhiêu số tự nhiên có $4$ chữ số đôi một khác nhau, trong đó không có mặt chữ số $7$.


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

Đưa về bài toán lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau từ tập $B = \left\{ {1;2;4;6;9} \right\}$.

Sử dụng công thức chỉnh hợp cho bài toán này.

Xem lời giải

Lời giải của Tự Học 365

Lập số tự nhiên có $4$ chữ số đôi một khác nhau sao cho không có mặt chữ số $7$, ta bỏ chữ số $7$ ra khổi tập hợp $A$, khi đó ta được tập hợp $B = \left\{ {1;2;4;6;9} \right\}$ và đưa bài toán trở thành có thể lập được từ tập $B$ bao nhiêu số tự nhiên có $4$ chữ số đôi một khác nhau.

Số các số có $4$ chữ số khác nhau lập được từ tập $B$ là chỉnh hợp chập $4$ của $5$. Vậy có \(A_5^4 = 120\) số.

Đáp án cần chọn là: d

Toán Lớp 12