Cho hình lăng trụ \(ABC.A'B'C'\). Gọi \(M,N\) lần lượt là trung điểm của \(BB',CC'\) và đường thẳng \(\Delta \) là giao tuyến của hai mặt phẳng \(\left( {AMN} \right)\) và \(\left( {A'B'C'} \right)\). Khẳng định nào sau đây đúng?
Phương pháp giải
Xác định giao tuyến \(\Delta \) và xét tính đúng sai của từng đáp án.
Lời giải của Tự Học 365

Gọi \(D = AN \cap A'C' \Rightarrow D \in \left( {AMN} \right) \cap \left( {A'B'C'} \right)\) và \(E = AM \cap A'B' \Rightarrow E \in \left( {AMN} \right) \cap \left( {A'B'C'} \right)\).
Khi đó \(DE = \left( {AMN} \right) \cap \left( {A'B'C'} \right) = \Delta \).
Lại có: \(\left\{ \begin{array}{l}\left( {AMN} \right) \cap \left( {MNC'B'} \right) = MN\\\left( {A'B'C'} \right) \cap \left( {MNC'B'} \right) = B'C'\\\left( {AMN} \right) \cap \left( {A'B'C'} \right) = DE\\MN//B'C'\end{array} \right. \Rightarrow MN//B'C'//DE\) (định lý ba giao tuyến)
Do đó \(DE//B'C'//BC\).
Đáp án cần chọn là: c
Toán Lớp 12