Câu 37201 - Tự Học 365
Câu hỏi Thông hiểu

Trong không gian với hệ tọa độ Oxyz , tìm tất cả các giá trị của m để phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+2z+m=0\) là phương trình mặt cầu.


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

Điều kiện để phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2ax-2by-2cz+d=0\)là phương trình mặt cầu là \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-d>0\).

Xem lời giải

Lời giải của Tự Học 365

Để phương trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y+2z+m=0\) là phương trình mặt cầu thì \({{(-2)}^{2}}+{{1}^{2}}+{{(-1)}^{2}}-m>0\Leftrightarrow m<6\)

Đáp án cần chọn là: b

Toán Lớp 12