Câu 37221 - Tự Học 365
Câu hỏi Vận dụng

Hệ phương trình $\left\{ \begin{array}{l}2x + \sqrt {y - 1} = 1\\2y + \sqrt {x - 1}  = 1\end{array} \right.$ có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\) ?


Đáp án đúng: b
Luyện tập khác

Phương pháp giải

- Trừ vế với vế rồi nhân với biểu thức liên hợp.

- Rút \(y\) theo \(x\) rồi thay vào các phương trình ban đầu

Xem lời giải

Lời giải của Tự Học 365

Điều kiện: \(x,y \ge 1\)

Ta có: $\left\{ \begin{array}{l}2x + \sqrt {y - 1}  = 1\\2y + \sqrt {x - 1}  = 1\end{array} \right.$\( \Rightarrow 2x - 2y + \sqrt {y - 1}  - \sqrt {x - 1}  = 0\)\( \Rightarrow 2\left( {x - y} \right) + \dfrac{{y - x}}{{\sqrt {y - 1}  + \sqrt {x - 1}  = 0}}\)

\( \Rightarrow \left( {x - y} \right)\left( {2 - \dfrac{1}{{\sqrt {y - 1}  + \sqrt {x - 1} }}} \right) = 0\)

Khi \(x = y\) thì \(2x + \sqrt {x - 1}  = 1 \Rightarrow \sqrt {x - 1}  = 1 - 2x\) (vô nghiệm do \(x \ge 1\) thì \(VT \ge 0,VP < 0\) )

Khi \(\sqrt {y - 1}  + \sqrt {x - 1}  = \dfrac{1}{2}\) thì \(2x + 2y + \dfrac{1}{2} = 2 \Rightarrow x + y = \dfrac{3}{4}\) (vô nghiệm vì \(x,y \ge 1\))

Vậy hệ phương trình vô nghiệm.

Đáp án cần chọn là: b

Toán Lớp 12