Câu 37211 - Tự Học 365
Câu hỏi Thông hiểu

Cho các đồ thị hàm số \(y = {a^x},y = {b^x},y = {c^x}\left( {0 < a,b,c e 1} \right)\), chọn khẳng định đúng:


Đáp án đúng: a
Luyện tập khác

Phương pháp giải

- Bước 1: Quan sát các đồ thị, nhận xét về tính đơn điệu để nhận xét các cơ số.

+ Hàm số đồng biến thì cơ số lớn hơn \(1\).

+ Hàm số nghịch biến thì cơ số lớn hơn \(0\) và nhỏ hơn \(1\).

- Bước 2: So sánh các cơ số dựa vào phần đồ thị của hàm số.

- Bước 3: Kết hợp các điều kiện ở trên ta được mối quan hệ cần tìm.

Xem lời giải

Lời giải của Tự Học 365

Ta thấy:

- Hàm số \(y = {b^x}\) nghịch biến nên \(0 < b < 1\).

- Hàm số \(y = {a^x},y = {c^x}\) đồng biến nên \(a,c > 1 > b\), loại B và D.

- Xét phần đồ thị hai hàm số \(y = {a^x},y = {c^x}\) ta thấy phần đồ thị hàm số \(y = {c^x}\) nằm trên đồ thị hàm số \(y = {a^x}\) nên \({c^x} > {a^x},\forall x > 0 \Leftrightarrow c > a\).

Đáp án cần chọn là: a

Toán Lớp 12