Câu 37204 - Tự Học 365
Câu hỏi Vận dụng

Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số \(y = \log ({x^2} - 2mx + 4)\) có tập xác định là $R$


Đáp án đúng: d
Luyện tập khác

Phương pháp giải

\({\log _a}x\) xác định trên $R$ với $a$ là hằng số thì điều kiện của $x>0$

Xem lời giải

Lời giải của Tự Học 365

Giải điều kiện: \({x^2} - 2mx + 4 > 0,\forall x \in R\)

\(\Delta ' = {m^2} - 4 < 0 \Leftrightarrow (m - 2)(m + 2) < 0\). Suy ra \( - 2 < m < 2\)

Đáp án cần chọn là: d

Toán Lớp 12